我们为通过异质网络提供了一种新颖的培训配方,用于联合学习,每个设备都可以具有不同的体系结构。我们介绍了培训,并以较高复杂性的设备为附带目标,以在联合环境中共同培训不同的体系结构。我们从经验上表明,与最先进的方法相比,我们的方法改善了不同架构的性能,并导致沟通节省高。
translated by 谷歌翻译
我们提出了一种用于分布式培训神经网络模型的新型联合学习方法,其中服务器在每轮中随机选择的设备的子集之间编制协作。我们主要从通信角度查看联合学习问题,并允许更多设备级别计算来节省传输成本。我们指出了一个基本的困境,因为当地 - 设备水平的最低实证损失与全球经验损失的最小值不一致。与最近的事先有关的不同,尝试无所作用的最小化或利用用于并行化梯度计算的设备,我们为每轮的每个设备提出动态规范器,以便在极限中,全局和设备解决方案对齐。我们通过实证结果对真实的和合成数据以及我们的方案在凸和非凸面设置中导致有效培训的分析结果,同时对设备异质性完全不可知,以及大量设备,部分参与和不平衡的数据。
translated by 谷歌翻译
近似任意凸起函数的任务是在诸如凸起回归的几个学习问题中,学习具有凸(DC)功能的差异,以及近似Bregman分歧。在本文中,我们展示了如何通过2块ADMM方法来解决广泛的凸函数学习问题,其中每个块的更新可以以封闭的形式计算。对于Convex Lipschitz回归的任务,我们建立了我们所提出的算法以$ o(n ^ 3 d ^ {1.5} + n ^ 2 d ^ {2.5} + nd ^ 3)$ for tata r x $ x \在r ^ {n \ times d} $。如果$ d = o(n ^ 4)$。此外,我们提供了类似的DC回归和Bregman发散学习的求解器。与以前的方法不同,我们的方法适用于GPU。我们展示了回归和度量学习实验,即我们的方法比现有方法快20倍,并产生与最先进的结果相当的结果。
translated by 谷歌翻译
Object detectors are conventionally trained by a weighted sum of classification and localization losses. Recent studies (e.g., predicting IoU with an auxiliary head, Generalized Focal Loss, Rank & Sort Loss) have shown that forcing these two loss terms to interact with each other in non-conventional ways creates a useful inductive bias and improves performance. Inspired by these works, we focus on the correlation between classification and localization and make two main contributions: (i) We provide an analysis about the effects of correlation between classification and localization tasks in object detectors. We identify why correlation affects the performance of various NMS-based and NMS-free detectors, and we devise measures to evaluate the effect of correlation and use them to analyze common detectors. (ii) Motivated by our observations, e.g., that NMS-free detectors can also benefit from correlation, we propose Correlation Loss, a novel plug-in loss function that improves the performance of various object detectors by directly optimizing correlation coefficients: E.g., Correlation Loss on Sparse R-CNN, an NMS-free method, yields 1.6 AP gain on COCO and 1.8 AP gain on Cityscapes dataset. Our best model on Sparse R-CNN reaches 51.0 AP without test-time augmentation on COCO test-dev, reaching state-of-the-art. Code is available at https://github.com/fehmikahraman/CorrLoss
translated by 谷歌翻译
This paper expounds the design and control of a new Variable Stiffness Series Elastic Actuator (VSSEA). It is established by employing a modular mechanical design approach that allows us to effectively optimise the stiffness modulation characteristics and power density of the actuator. The proposed VSSEA possesses the following features: i) no limitation in the work-range of output link, ii) a wide range of stiffness modulation (~20Nm/rad to ~1KNm/rad), iii) low-energy-cost stiffness modulation at equilibrium and non-equilibrium positions, iv) compact design and high torque density (~36Nm/kg), and v) high-speed stiffness modulation (~3000Nm/rad/s). Such features can help boost the safety and performance of many advanced robotic systems, e.g., a cobot that physically interacts with unstructured environments and an exoskeleton that provides physical assistance to human users. These features can also enable us to utilise variable stiffness property to attain various regulation and trajectory tracking control tasks only by employing conventional controllers, eliminating the need for synthesising complex motion control systems in compliant actuation. To this end, it is experimentally demonstrated that the proposed VSSEA is capable of precisely tracking desired position and force control references through the use of conventional Proportional-Integral-Derivative (PID) controllers.
translated by 谷歌翻译
Researchers are doing intensive work on satellite images due to the information it contains with the development of computer vision algorithms and the ease of accessibility to satellite images. Building segmentation of satellite images can be used for many potential applications such as city, agricultural, and communication network planning. However, since no dataset exists for every region, the model trained in a region must gain generality. In this study, we trained several models in China and post-processing work was done on the best model selected among them. These models are evaluated in the Chicago region of the INRIA dataset. As can be seen from the results, although state-of-art results in this area have not been achieved, the results are promising. We aim to present our initial experimental results of a building segmentation from satellite images in this study.
translated by 谷歌翻译
This paper presents the preliminary findings of a semi-supervised segmentation method for extracting roads from sattelite images. Artificial Neural Networks and image segmentation methods are among the most successful methods for extracting road data from satellite images. However, these models require large amounts of training data from different regions to achieve high accuracy rates. In cases where this data needs to be of more quantity or quality, it is a standard method to train deep neural networks by transferring knowledge from annotated data obtained from different sources. This study proposes a method that performs path segmentation with semi-supervised learning methods. A semi-supervised field adaptation method based on pseudo-labeling and Minimum Class Confusion method has been proposed, and it has been observed to increase performance in targeted datasets.
translated by 谷歌翻译
Recent work has identified noisy and misannotated data as a core cause of hallucinations and unfaithful outputs in Natural Language Generation (NLG) tasks. Consequently, identifying and removing these examples is a key open challenge in creating reliable NLG systems. In this work, we introduce a framework to identify and remove low-quality training instances that lead to undesirable outputs, such as faithfulness errors in text summarization. We show that existing approaches for error tracing, such as gradient-based influence measures, do not perform reliably for detecting faithfulness errors in summarization. We overcome the drawbacks of existing error tracing methods through a new, contrast-based estimate that compares undesired generations to human-corrected outputs. Our proposed method can achieve a mean average precision of 0.91 across synthetic tasks with known ground truth and can achieve a two-fold reduction in hallucinations on a real entity hallucination evaluation on the NYT dataset.
translated by 谷歌翻译
Many real-world applications of language models (LMs), such as code autocomplete and writing assistance, involve human-LM interaction, but the main LM benchmarks are non-interactive, where a system produces output without human intervention. To evaluate human-LM interaction, we develop a framework, Human-AI Language-based Interaction Evaluation (H-LINE), that expands non-interactive evaluation along three dimensions, capturing (i) the interactive process, not only the final output; (ii) the first-person subjective experience, not just a third-party assessment; and (iii) notions of preference beyond quality. We then design five tasks ranging from goal-oriented to open-ended to capture different forms of interaction. On four state-of-the-art LMs (three variants of OpenAI's GPT-3 and AI21's J1-Jumbo), we find that non-interactive performance does not always result in better human-LM interaction and that first-person and third-party metrics can diverge, suggesting the importance of examining the nuances of human-LM interaction.
translated by 谷歌翻译
Extracting building heights from satellite images is an active research area used in many fields such as telecommunications, city planning, etc. Many studies utilize DSM (Digital Surface Models) generated with lidars or stereo images for this purpose. Predicting the height of the buildings using only RGB images is challenging due to the insufficient amount of data, low data quality, variations of building types, different angles of light and shadow, etc. In this study, we present an instance segmentation-based building height extraction method to predict building masks with their respective heights from a single RGB satellite image. We used satellite images with building height annotations of certain cities along with an open-source satellite dataset with the transfer learning approach. We reached, the bounding box mAP 59, the mask mAP 52.6, and the average accuracy value of 70% for buildings belonging to each height class in our test set.
translated by 谷歌翻译